Претражи овај блог

Учитавање...

понедељак, 11. фебруар 2013.


Opštinsko takmičenje iz fizike (u Nišu) ove godine (10.2.2013.) biće održano u Osnovnoj školi ,,Bubanjski heroji" sa početkom u 9 sati.

Zadatke sa rešenjima i rezultate ovog takmičenja pogledajte na ovoj stranici, koja će biti ažurirana, do daljeg.

Na sledećem linku pogledajte rezultate za učenike osnovnih škola i posebnih odeljenja nišavskog okruga :




Zadatke i rešenja možete videti na našem glavnom sajtu:

уторак, 22. јануар 2013.

Vremenska prognoza

Na sajtu je dodata nova stranica: Vremenska progniza
Svakodnevno ćemo vas obaveštavati o današnjoj i sutrašnjoj vremenskoj prognozi...

субота, 05. јануар 2013.

Dušanovom zakonik

U svetskoj istoriji prava Dušanov zakonik se sa pravom smatra ustavom srednjovekovne srpske države i najboljom slikom srpskog prava i srpskog društva u vreme njegovog najvećeg uspona. Po svojim karakteristikama, ovaj poduhvat srpskog srednjovekovnog zakonodavstva sa svojim institutima i načelima zaslužuje veliku pažnju istoričara.
Car Stefan Dušan (1308-1355)
Srpski car Stefan Dušan (1308-1355), donošenjem ovog značajnog i za to vreme veoma naprednog i dalekovidog zakona, postao je zakonodavac kao što su to bili i Justinijan, Lav VI Mudri i Vasilije I, držeći se duha i tradicije rimsko-vizantijskog prava.
Stranica Dušanovog zakonika
Srpsko običajno pravo i pravo sadržano u poveljama i međunarodnim ugovorima srpskih vladara na najcelishodniji način uključeno je u Dušanov zakonik kako bi se regulisali i posebni odnosi u feudalnom društvu u Srbiji. Odredbe koje se odnose na trgovinu, na primer, imaju svoje poreklo u srpsko-dubrovačkim sporazumima iz 12. i 14. veka.
više o Dušanovom zakoniku možete saznati na web adresi: www.dusanov-zakonik.co.yu

Najosnovnije o glagolima


GLAGOLI SU PROMENLJIVA VRSTA RECI, KOJE OZNACAVAJU:

1)RADNJU
2)STANJE
3)ZBIVANJE



NAJCESCE IMAJU FUNKCIJU (SLUZBU) PREDIKATA....

NJIHOVA PROMENA NAZIVA SE KONJUGACIJA, A MENJAJU SE PO:

1)LICIMA
2)PO RODU (MUSKI,ZENSKI,SREDNJI)
3)PO VREMENIMA (POSTOJE 14, A NEKI OD NJIH SU: PERFEKAT,PREZENT,FUTUR1.,FUTUR2.,PLUSKVAMPERFEKAT,PERFEKS,INFINITIV....)
4)PO GLAGOLSKOM VIDU (SVRSENA I NESVRSENA RADNJA)
5)PO GLAGOLSKOM RODU (PRELAZNI,NE PRELAZNI,POVRATNI)

Vic meseca

‎-Halo jel to policija?
-Da, recite!!
-2 ribe se tuku za mene..
-Pa šta je tu loše?
-Ova ružna pobjeđjuje!!!

Na granici fizičke realnosti


Zašto je uopšte potrebna Opšta teorija relativnosti? Zašto se mučiti složenim računima u četvorodimenzionalnom prostor-vremenu kada na i staromodna shvatanja Isaka Njutna ("gravitacija je sila") daju odličnu tačnost svakoj prilici. A matematika Njutnove gravitacije je mnogo jednostavnija od Ajnštajnove. Čak i kad i za slanje ljudi na Mesec, lansiranje svemirskih brodova ka planetama, stara Njutnova teorija izvanredno funkcioniše pri izračunavanju orbita i trajektorija.
Sve doskora, niko nije sigurno verovao da bi u Univerzumu mogla da postoje mesta gde je prostor-vreme ozbiljno zakrivljeno. U blizini Sunca, oko zvezda i galaksija, gravitacija je prilično slaba i prostor-vreme je neznatno zakrivljeno. Zato i staromodna njutnovska shvatanja funkcionišu tako dobro u mnogim prilikama. U slabim gravitacionim poljima, razumno je zameniti efekte zakrivljenog prostor-vremena efektima sile.
Tokom 60-tih godina XX veka astronomi su najzad počeli da ozbiljnije napreduju u razumevanju životnih ciklusa zvezda. Oni su shvatili da se masivne zvezde katastrofalno sažimaju pod nesavladivim uticajem gravitacije. Gravitacija oko neke takve masivne zvezde, koja umire, nije više slaba. I zaista, zakrivljenost prostor-vremena postaje tako velika da zvezda osuđena na porast nestaje iz naše vasione, ostavljajući iza sebe rupu u kosmosu.
Zamislimo masivnu zvezdu na kraju njenog života. Svo unutrašnje termonuklearno gorivo je potrošeno. Eksplozija supernove upravo je rastrgla zvezdu, ali u njenom sagorelom jezgru ostalo je još mnogo mase, više od 2,5 solarnih masa. Nema te sile u prirodi koja može da zadrži takvu mrtvu zvezdu: ona je osuđena da postane crna rupa.
Pre početka gravitacionog kolapsa gravitacija na površini zvezde je relativno slaba, prostor-vreme je još uvek samo neznatno zakrivljeno.
Do kolapsa dolazi naglo, čim gravitacija počne da savlađuje sile između čestica unutar sagorele zvezde. U nekoliko sekundi zvezda se strahovito skuplja dok njene čestice (protoni, elektroni, neutroni) bivaju zgnječeni jedni u druge. Dok gravitacija sabija zvezdu na sve manju i manju zapreminu, zakrivljenost prostor vremena oko zvezde postaje sve izraženija, a svetlosni zraci koji napuštaju zvezdu skreću pod sve većim uglovima.
Kako se zvezda sve više približava svojoj neizbežnoj sudbini, sve više svetlosnih zraka savija prema njenoj površini. Zakrivljenost prostor-vremena dalje raste, tako da još samo zraci koji skoro vertikalno napuštaju zvezdu uspevaju da odu. Kako se sve više i više svetlosti vraća na zvezdu, nekom udaljenom posmatraču izgleda da zvezda postaje naglo gubi svoj sjaj.
Na kraju, u kritičnoj fazi kolapsa, zakrivljenost prostor-vremena postaje tako velika da svi zraci savijaju prema sve manjoj površini zvezde. Zvezda prestaje da emituje bilo kakvu svetlost u okolan prostor, postaje skroz crna. A kako se ništa ne može kretati brže od svetlosti, ništa ne uspeva da pobegne sa zvezde u spoljnu vasionu. Gravitacija je postala tako jaka da zvezda bukvalno nestaje iz naše vasione.
Kada se kolapsirajuća zvezda skupi do tog stepena da ništa, čak ni svetlost, ne može da je napusti, kaže se da je zvezda upala unutar svog horizonta događaja. Termin "horizont događaja" je veoma pogodan. To je doslovno horizont u geometriji prostora i vremena iza kojeg se ne može videti nijedan događaj. Ne postoji nikakav način da se sazna šta se dešava unutar horizonta događaja. To je mesto koje je odvojeno od našeg prostora i vremena, to više nije deo naše vasione.
Na zvezdinu nesreću, gravitacija nije zadovoljena time što je sabila zvezdu unutar horizonta događaja. Kako i dalje nema nikakvih sila u prirodi koje i mogle da održe zvezdu ona se dalje skuplja pod uticajem sve veće gravitacije. Jačina gravitacije i zakrivljenost prostor-vremena raste sve više dok na kraju čitava zvezda ne bude sabijena u jednu tačku. U toj tački pritisak i gustina su beskonačni, i što je još važnije zakrivljenost prostor vremena je beskonačna. To je tačka u koju ide zvezda. Svaki atom i svaka čestica zvezde potpuno su smrvljeni i uništeni na tom mestu beskonačne zakrivljenosti prostora i vremena. To je samo srce crne rupe, koje se zove singularitet.
Crne rupe su veoma jednostavne. One imaju samo dva dela: singularitet i horizont događaja koji ga okružuje. Crna rupa je prazna. Tu apsolutno nema ničega. Nema atoma, nikakvih stena, ni gasova ni prašine. Ničega! Često se o horizontu događaja govori kao o površini crne rupe, na njemu nema ničega opipljivog. Sva zvezdana materija je potpuno smrvljena i sabijena u singulartitet u centru crne rupe. Sve što postoji u crnoj rupi je oblast beskonačno zakrivljenog prostora i vremena.
Mnogi čudni efekti OTR – isti oni koji su tako zanemarljivo mali ovde na Zemlji, ili u blizini Sunca, uvećani su preko svake mere u blizini crne rupe. Usporavanje vremena, na primer, je na Zemlji potpuno zanemarljivo, ali na horizontu događaja koji okružuje crnu rupu vreme se potpuno zaustavlja. Unutar horizonta događaja pravci prostora i vremena su izmenjeni! Ovde na Zemlji postoji sloboda kretanja kroz prostor, u bilo kom od tri pravca: gore-dole, levo-desno, napred-nazad. Ali, voleli mi to ili ne kroz vremenski pravac idemo samo u jednom smeru. Unutar crne rupe postoji sloboda kretanja kroz vreme, ali od toga nema nikakve koristi. Koliko se slobode dobije na kretanju kroz vreme, toliko se gubi u jednom od pravaca kretanja kroz prostor. Kroz prostor crne rupe moguće je ići samo u jednom smeru, a taj smer vodi pravo u singularitet.
Crne rupe spadaju u najjednostavnije objekte u vasioni, ali to su najverovatnije i najčudniji objekti u našoj vasioni. Posmatranjem dijagrama uronjavanja, o kojima je već bilo reči, i primenom OTR može se doći do nekih vrlo egzotičnih svojstva crnih rupa.
Zamislimo jednu masivnu zvezdu pred kraj njenog života. Pred početak kolapsa dijagram uronjavanja oko zvezde izgleda kao preterana verzija dijagrama uronjavanja oko našeg Sunca. Sa napredovanjem kolapsa gravitacija unutar zvezde postaje sve jača i jača. Zakrivljenost prostor-vreme postaje sve naglašenija, a depresija u dijagramu uronjavanja postaje sve dublja i dublja. Konačni oblik dijagrama uronjavanja koji prati stvaranje crne rupe, prvi su ispitali Ajnštajn i Rozen 30-tih godina ovog veka. Na njihovo iznenađenje našli su da se dijagram otvara i povezuje sa drugom vasionom! Ovo neobično svojstvo crne rupe nazvano je Ajnštajn-Rozenov most. Ali to nije bilo sve. Kasnije se došlo do zaključka da je samo jedna od mogućnosti da most spaja našu vasionu sa nekom zasebnom oblašću prostor-vremena, koja je potpuno odvojena i nema nikakve veze sa našom vasionom. Ali jednako je bila prihvatljiva i zamisao da je to deo naše vasione. Ovakvi "tuneli" između paralelnih vasiona ili između udaljenih delova jedne iste vasione nazivaju se crvotočine. Treba napomenuti i to da crvotočine mogu da spajaju našu vasionu samu sa sobom na mnogo mesta, ali to bi bila različita mesta u prostor-vremenu. Drugim rečima, ulaskom u jednu od tih "drugih vasiona" mogli bismo ponovo ući u našu vasionu, na istom mestu, ali u nekom drugom vremenu. To je mašina za putovanje kroz vreme. Teorijski, kad bi smo zaronili u rotirajući crvotočinu i pažljivo pilotirali našim vasionskim brodom mogli bi smo se ponovo pojaviti u našoj vasioni pre milijardu godina i posetiti Zemlju pre nego što su se na njoj pojavili dinosaurusi.
Da li je to zaista moguće? Da li su neka od ovih fantastičnih predviđanja zaista istinita? Na kraju krajeva sva ova predviđanja su direktna, logična posledica naše najbolje teorije gravitacije: opšte teorije relativnosti. Ipak, da li treba verovati u sve ovo?
Tu ima nekoliko problema. Na primer, ako bi smo koristili crvotočinu kao vremensku mašinu i vratiti se u vreme pre milijardu godina, onda bi svakako mogli da se vratimo na Zemlju jedan sat pre nego što smo je napustili. Mogli bismo da sretnemo sami sebe i ispričati samom sebi kako je putovanje bilo lepo i zanimljivo. Zatim bi smo obojica mogli ući u raketu i kruniti opet! I opet! I opet!
Očigledno, ovo bi bilo veoma čudno stanje stvari. Ipak, da bi smo prošli kroz crvotočinu trebali bi da se krećemo sasvim blizu beskonačno zakrivljenog prostor-vremena ne upadajući u njega. Šta znači stajati blizu singulariteta? Kakvi se procesi dešavaju u blizini beskonačno zakrivljenog prostor-vremena? Odgovore na ova pitanja ne znamo, ali teško da bi čovek mogao da preživi ono što se tamo dešava pa prema tome od naših putovanja kroz crvotočine najverovatnije nema ništa.
Sedamdesetih godina XX veka Stiven Hoking, sa univerziteta u Kembridžu, je došao na ideju da na crne rupe "primeni" kvantnu teoriji, i to je dovelo do još čudnijih zaključaka. On je pokazao da crne rupe ustvari nisu tako crne.
Vratimo se Hajzenbergovom principu neodređenosti koji predstavlja osnovu kvantne teorije. Već je rečeno da postoji neodređenost između položaja i brzine, ali analogna neodređenost postoji između energije i vremena. Ne možemo saznati tačnu energiju sistema u svakom vremenskom trenutku. U kratkom vremenskom intervalu može postojati velika neizvesnost u pogledu količine energije u subatomskom svetu.
Jedan od najvažnijih zaključaka Ajnštajnove STR je ekvivalentnost mase i energije. Kako jedna verzija principa neodređenosti objašnjava postojanje uzajamne neodređenosti između energije i vremena, princip se može izraziti i drugačije, kao uzajamna neodređenost između mase i energije u kvantnom svetu. Dugim rečima, u veoma kratkom vremenskom intervalu ne možemo biti svesni koliko materije ima u nekom delu prostora. U kratkom trenutku treptaja prirode čestice i antičestice se mogu spontano pojaviti i nestati.
Jedna od osnovnih ideja subatomske fizike glasi "Ako nešto nije strogo zabranjeno, onda će se to dogoditi". "Nešto" se ovde odnosi na bilo koji kvantni proces. Prema tome, parovi svih mogućih čestica i antičestica stalno se stvaraju i uništavaju svuda, na svakom mestu u našoj vasioni. Naravno, nema načina za direktno posmatranje tih parova čestica i antičestica. To zabranjuje princip neodređenosti : parovi jednostavno postoje samo u kratkim vremenskim intervalima da je bilo kakvo posmatranje nemoguće. Zbog toga se oni nazivaju virtuelnim parovima.
Kako ovi virtuelni parovi nastaju svuda u vasioni, oni nastaju i u blizini horizonta događaja. Zamislimo sada jedan takav par koji se pojavljuje pored crne rupe. U jednom trenu čestica i antičestica se razdvajaju, ali jedna od tih dveju čestica biva "progutana" od strane crne rupe. Njen partner ostaje napušten, i zbog toga ova čestica ne može više da nestane. Napuštena čestica tako je prinuđena da postane realna čestica u realnom svetu. Kad bi neko iz daljine posmatrao ovaj proces činilo bi mu se da je čestica izašla iz crne rupe. Tako bi dio doveden do apsolutno zapanjujućeg saznanja da crna rupa emituje čestice!
Hoking je došao do logičkog zaključka, ističući da energetski bilans prirode mora biti zadovoljen. Energija stvaranja ovih čestica mora doći odnegde. Očigledan izvor energije je energija gravitacionog polja crne rupe. Kako crna rupa emituje čestice, ona mora da gubi energiju i zbog toga njena masa mora da se smanjuje, odnosno crne rupe isparavaju!
Dok materija curi iz crne rupe, vasionu ulazi nova informacija. Materija koju neka od rupa izbacuje ima boju, strukturu, hemijski sastav – sve sveži, novi podaci koji nisu ranije postojali u vasioni. Crna rupa je jedan "izvor informacija".
Kvantni procesi koji leže u osnovi Hokingovog mehanizma isparavanja su potpuno slučajni. Zbog principa neodređenosti, ne može se predvideti gde i kada će se pojaviti neka nova čestica. Zbog toga su i podaci koji se izbacuju u vasionu iz neke od crnih rupa sasvim slučajni. To je suština skoro formulisanog Hokingovog principa slučajnosti. Kao i Hajzenbergov princip neodređenosti i on je iskaz o osnovnim ograničenjima naše sposobnosti da spoznajemo realnost. Ako u vasioni ima crnih rupa koje stvaraju nove čestice, onda podaci i informacije ulaze u vasionu na potpuno slučajan način.
Albert Ajnštajn nikada nije voleo kvantnu mehaniku, mada je i sam dao veliki doprinos njenom razvoju. Iako je sve do sada rečeno u osnovi bilo o Ajnštajnovom geniju, u jednoj stvari on nije bio u pravu. Kvantna mehanika funkcioniše. U kvantnom svetu postoji jedna neizvesnost. Ali, s obzirom na Hokingova otkrića, možda postoji i neki nivo slučajnosti koji se proteže preko cele vasione. O tome govori i Hokingov "odgovor" Ajnštajnu: "Bog ne samo da se igra kockicama, nego ponekad baci kockice tamo gde se one ne mogu videti."